Course curriculum

Click on Show More to check the entire contents 👇👇

    1. Welcome

    2. Course Resources

    3. Support

    1. Understanding Generative AI Basics

    2. Introduction

      FREE PREVIEW
    3. Introduction to Generative AI

    4. Introduction to AI Tools (ChatGPT, Grok)

    5. Prompt Engineering Basics

    6. Applications of Generative AI

    7. Ethical Considerations in AI

    1. Welcome Page - Free Preview

      FREE PREVIEW
    2. Welcome to the Course!!

    3. Join our Community!!

    4. What is Data Analytics

    5. Importance of Data Analytics

    6. Types of Data

      FREE PREVIEW
    7. Types of Statistical Analysis

    8. Steps to obtain a Data Analytics solution

    9. 1 Business Understanding

    10. 2 Data Understanding

    11. 3 Data Collection

    12. 4 Data Preparation

    13. 5 Data Modelling

    14. 6 Deployment

    15. Use Case

    1. Lets install Python together

      FREE PREVIEW
    2. Google Colab, what's that?

    3. Let's get familiar with ChatGPT

    1. Course Contents

    2. Python Introduction

      FREE PREVIEW
    3. Variables & Keywords

    4. Datatypes & Operators

    5. Data Structures - Lists

    6. Data Structures - Tuples

    7. Data Structures - Sets

    8. Data Structures - Dictionary

    9. Loops & Iteration

    10. Functions in Python

    11. File Handling

    12. Map Reduce Filter

    13. OOPS Concepts

    14. Control Structures in Python

    15. Python Quiz #1

    16. NumPy

    17. Pandas

    18. Data Visualization

    19. Matplotlib

    20. Seaborn

    21. Python Quiz #2

    1. Course Contents

    2. Agenda

    3. Data Analytics/Science Process

      FREE PREVIEW
    4. What is EDA

    5. Visualization

    6. Steps involved in EDA (Data Sourcing)

    7. Steps involved in EDA (Data Cleaning)

    8. Handle Missing Values (Theory)

    9. Handle Missing Values (Code)

    10. Feature Scaling

    11. Feature Scaling (Standardization)

    12. Feature Scaling (Normalization)

    13. Feature Scaling (Code)

    14. Outlier Treatment (Theory)

    15. Outlier Treatment (Code)

    16. Invalid Data

    17. Types of Data

    18. Types of Analysis

    19. Univariate Analysis

    20. Bivariate Analysis

    21. Multivariate Analysis

    22. Numerical Analysis

    23. Analysis (Code)

    24. Derived Metrics

    25. Feature Binning (Theory)

    26. Feature Binning (Theory)

    27. Feature Binning (Code)

    28. Feature Encoding

    29. Feature Encoding Detailed

    30. Feature Encoding (Code)

    31. Case Study

    32. Data Exploration (Case Study)

    33. Data Cleaning (Case Study)

    34. Univariate Analysis (Case Study)

    35. Bivariate Analysis (Case Study)

    36. Bivariate Analysis (Case Study)

    37. EDA Report (Case Study)

    38. EDA Quiz

About this course

  • ₹4,999.00
  • 293 lessons
  • 49.5 hours of video content